Лабораторная работа № 2

Экспериментальное изучение закона сохранения механической энергии.

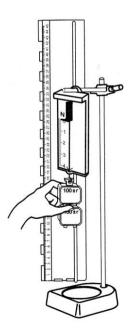
Оборудование: штатив с муфтой и перекладиной, динамометр, 2 груза направляющая рейка.

Цель работы: состоит в сравнении изменений потенциальной энергии груза, прикреплённого к пружине, и энергии пружины, растянутой под действием груза.

Изменение потенциальной энергии груза по отношению к какой-то поверхности определяется изменением его высоты относительно этой поверхности:

$$\Delta E_2 = mgh_2 - mgh_1 = mg\Delta h (1)$$

Изменение энергии пружины, если в исходном состоянии она не была деформирована, определяется её величиной в растянутом положении:


$$\Delta E_n = \frac{kx_2^2}{2} - 0 = \frac{k\Delta x^2}{2}$$
 (2)

Если пружина удлиняется под действием падающего груза, то на основании закона сохранения энергии должно выполняться равенство: $\Delta E_z = \Delta E_n$.

Выполнение работы:

- 1. Ha закрепите перекладине верхнюю часть корпуса динамометра закрепите перекладину с помощью муфты на стержне. Динамометр вешается перекладину кольцо, которое на за непосредственно крепится к корпусу динамометра. Таким образом, избегается касание грузами основания штатива.
- 2. Установите направляющую рейку так, чтобы её шкала располагалась возможно ближе к указателю динамометра.
- 3. Подготовьте таблицу для записи результатов измерений и вычислений:
- 4. Определите положение указателя нерастянутой пружины динамометра на шкале $-x_1$.
- 5. Подвесьте к динамометру два груза и, приподнимая их рукой, верните пружину в нерастянутое состояние. Отпустите грузы и заметьте по шкале положение указателя, соответствующее максимальному удлинению пружины $-x_2$.
- 6. Вычислите удлинение пружины: $\Delta x = x_1 x_2$.

№ опыта	x_1, M	x_2 , M	Дх, м	$\Delta x_{cp} = \Delta h, M$	$arDelta E_{arphi}$ Дж	∆Е", Дж

- 7. Повторите опыт 5-6 раз и вычислите среднее значение удлинения Δx_{cp} . Использование при дальнейших расчётах среднего значения удлинения позволит уменьшить влияние на результат случайных погрешностей, допущенных при проведении отдельных измерений положения указателя. Изменение длины пружины соответствует изменению высоты грузов, поэтому $\Delta x_{cp} = \Delta h$.
- 8. Определите общую массу грузов (масса груза указана на его поверхности) и, пользуясь формулой (1), вычислите изменение потенциальной энергии грузов ΔE_z .
- 9. Вычислите по формуле (2) изменение энергии пружины. При этом учитывают, что жёсткость пружины динамометра $k = 40 \ H/m$.
- 10. Сравните изменение энергии грузов и пружины и сделайте вывод о сохранении полной механической энергии системы грузы-пружина.